Dark matter-wave gap solitons in dense ultracold atoms trapped by a one-dimensional optical lattice

Date: Jun 15, 2021

Li, Jiawei; Zeng, Jianhua

Optical lattices have been used as a versatile toolbox to control Bose-Einstein condensates (BECs) in recent years, and a wealth of emergent nonlinear phenomena have been found, including bright gap solitons and dark ones, among which the former has been realized in experiments. The latter, however, has only theoretical results and its fundamental properties are still not well understood. Here we theoretically and numerically explore an open issue of creating stable matter-wave dark gap solitons in a one-dimensional optical lattice, onto which the BECs with self-defocusing quintic nonlinearity are loaded. Using linear-stability analysis and direct simulations, the formation, structures, and properties of dark gap solitons in quintic nonlinearity have been compared to those upheld by cubic Kerr nonlinearity. In particular, we uncover that the dark gap solitons and soliton clusters are robustly stable in the first finite band gap of the underlying linear spectrum, and are hard to be stabilized in the second gap. The predicted dark gap solitons are observable in current experiments on dense ultracold atoms, using an optical lattice technique, and in the optics domain for nonlinear light propagation in periodic optical media with quintic nonlinearity.

The result was published on PHYSICAL REVIEW A.

DOI: 10.1103/PhysRevA.103.013320


Download: