Liu Shang-Kuo; Wang Tao; Li Kun; Cao Kun; Zhang Xi-Bin; Zhou Yan; Zhao Jian-Ke; Yao Bao-Li
Modulation transfer function (MTF) measurement is a major means to evaluate the imaging quality of a space camera. The influence caused by the spectral characteristic of light source on the MTF results is not negligible, because the transmittance and color aberration of optical systems, and quantum efficiency of the space camera detectors are all spectrally related. Thus, MTF results tested by different light sources are different from each other. To address this problem, we propose a method to analyze the influence of spectral characteristics of light sources on measuring the MTF of space cameras. In addition, the devices and methods are designed to calibrate the spectral response and monochrome point spread function (PSF) of space camera. A Sigma lens (focal length: 1000mm, F number: 5.6) and a Cannon EOS 5DSR camera (pixel size: 4.14 mu m) are combined into an experimental space camera, whose spectral response is calibrated with a monochromator (Omno30300, NBeT) and a spectral radiometer (FieldSpec, ASD). We calibrate the monochrome PSF of the Sigma lens with the same monochromator and a CCD (PIXIS 1024, Princeton Instruments, pixel size: 13 mu m) micro-measuring system (20X objective). During the calibration of spectral response and monochrome PSF, the same collimator (focus: 5000 mm, F number: 10) is used. With using the proposed method and those calibrating data, we compute the theoretical values of the MTF of a space camera measured separately with five different light sources. The results indicate that MTF measured by a xenon lamp is greatly different from those MTFs measured by the other four light sources. Comparisons of those theoretically calculated MTFs, separately, show that the MTF measured by a tungsten halogen lamp is greater than the MTF measured by a xenon lamp at each spatial frequency. The deviation between those two lamps reaches a maximum value of 0.075 in the medium-high frequency zone. Furthermore, in order to verify those theoretical conclusions, a platform including a collimator and the previous space camera is constructed. The MTFs measured by a tungsten halogen lamp and a xenon lamp are computed with the slanted-edge method respectively. The results demonstrate that the distributions and deviations of the MTFs tested by those two lamps are identical to those theoretical results at each spatial frequency, with the maximum deviation being 0.057. The theoretical and experimental results demonstrate that the suggested method can accurately calculate the influence of spectral characteristics of light sources on measuring MTF of space cameras. The proposed method can also be adopted to investigate the influence of spectral characteristics of light sources on MTF of optical systems in the design or test stages.
The result was published on ACTA PHYSICA SINICA. DOI: 10.7498/aps.70.20201575
Download: