Automated human gesture recognition is receiving significant research interest, with applications ranging from novel acquisition techniques to algorithms, data processing, and classification methodologies. This tutorial presents an overview of the fundamental components and basics of the current 3D optical image acquisition technologies for gesture recognition, including the most promising algorithms. Experimental results illustrate some examples of 3D integral imaging, which are compared to conventional 2D optical imaging. Examples of classifying human gestures under normal and degraded conditions, such as low illumination and the presence of partial occlusions, are provided. This tutorial is aimed at an audience who may or may not be familiar with gesture recognition approaches, current 3D optical image acquisition techniques, and classification algorithms and methodologies applied to human gesture recognition.
Human gesture recognition workflow.
Download: