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Parity–time (PT ) symmetric lattices have been widely studied in controlling the flow of waves, and recently,
moiré superlattices, connecting the periodic and non-periodic potentials, have been introduced for exploring
unconventional physical properties in physics, while the combination of both and nonlinear waves therein re-
mains unclear. Here, we report a theoretical survey of nonlinear wave localizations in PT symmetric moiré op-
tical lattices, with the aim of revealing localized gap modes of different types and their stabilization mechanism.
We uncover the formation, properties, and dynamics of fundamental and higher-order gap solitons as well as
vortical ones with topological charge, all residing in the finite bandgaps of the underlying linear-Bloch wave
spectrum. The stability regions of localized gap modes are inspected in two numerical ways: linear-stability analy-
sis and direct perturbance simulations. Our results provide an insightful understanding of soliton physics in
combined versatile platforms of PT symmetric systems and moiré patterns. © 2023 Chinese Laser Press

https://doi.org/10.1364/PRJ.474527

1. INTRODUCTION

The moiré pattern—a periodic pattern overlapping its copy
with a relative twist—as a novel two-dimensional (2D) material
has shown great unique physical properties in condensed mat-
ter physics, including tunable flatbands, superconductivity, and
correlated insulator phases at twist (magic) angles in twisted
double-layer graphene [1–4], leading to an emerging field
called twistronics—manipulating electronic properties through
the relative twist angle [5]. Recently, the studies of moiré pat-
terns and physics have entered regimes of optics and photonics:
particularly, reconfigurable photonic moiré lattices were created
in 2D photorefractive media by optical induction [6], and
localization–delocalization transition of light [7] and optical
soliton formation induced by the twisting angle [8,9] were ob-
served, respectively, in linear and nonlinear contexts; magic-an-
gle lasers with unique confinement mechanisms were fabricated
in nanostructured moiré superlattices [10]; and multifrequency
soliton generation in quadratic nonlinear media with commen-
surate–incommensurate photonic moiré lattices was predicted
[11], to name just a few examples.

In addition, moiré optical lattices have been proposed in the
context of ultracold atoms, and the associated moiré physics
therein is being revealed [12–14]. To be specific, simulating
twisted bilayers is possible by using cold atoms in state-
dependent optical lattices that show Dirac-like physics and a

band narrowing feature, making them ideal candidates to ob-
serve similar physics (such as strongly correlated phenomena in
condensed matters) with larger rotation angles [12]. Simulating
twistronics without a twist, a highly tunable scheme that rules
out a physical bilayer or twist to synthetically emulate twisted
bilayer systems in the setting of ultracold atoms trapped in an
optical lattice, was proposed [13]. Moiré physics including tun-
able flatbands and Larkin–Ovchinnikov superfluids in spin-
twisted optical lattices (rather than bilayers) was investigated
[14], and considering that electromagnetically induced regular
optical (or photonic) lattices via atomic coherence in atomic
ensembles are mature in experiments, we recently proposed
a related scheme to create electromagnetically induced moiré
optical lattices in a three-level coherent atomic gas (either
hot or cold atoms) in the regime of electromagnetically induced
transparency [15]. Consequently, we can safely conclude that
optics and ultracold atoms open flexible and promising routes
toward the realization of moiré optical lattices and associated
moiré physics.

Moiré patterns bridge the gap between periodic structures
and aperiodic ones, offering a new platform for studying non-
linear localization of light [8,9]. Particularly, conventional peri-
odic structures such as photonic crystals and lattices in optics
[16–18] and optical lattices in the context of ultracold atoms
[19–21] exhibit finite photonic or atomic bandgaps [22], the
precise control of which and the corresponding nonlinearity
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could result in the emergence of a new spatially self-localized
state called gap solitons (GSs) under repulsive (defocusing)
nonlinearity [23–32]. Experimentally, optical GSs have been
confirmed in optical Bragg gratings [33] and nonlinear pho-
tonic crystals [34], and the creation of atomic GSs of Bose–
Einstein condensates (BECs) in optical lattices [35]. It is worth
noting that parity–time (PT ) symmetric lattices as an interest-
ing periodic structure were heavily studied in optical [36–41]
and matter-wave [42,43] media and beyond in past years, pro-
viding a fertile land for investigating nonlinear waves including
GSs [44–49]. However, to the best of our knowledge, the com-
bination of moiré patterns and PT symmetry has not yet been
reported.

In this work, we address the formation, properties, and
dynamical stability of matter-wave GSs in a BEC trapped with
PT symmetric moiré optical lattices constituted of two 2D PT
lattices with a twist (rotation) angle. Spatially localized nonlin-
ear excitations of three kinds of coherent matter waves—
fundamental GSs and high-order ones grouped as two funda-
mental modes, as well as gap vortices with topological charge—
situated inside the first and second atomic bandgaps of the lin-
ear Bloch-wave spectrum are found, underlining the tunable
flatbands of the twisting PT periodic structure and robust sta-
bility of the reconfigurable nonlinear localized matter-wave
structures within the associated gaps. The stability and insta-
bility properties of the nonlinear localized modes are assessed
by linear-stability analysis and direct perturbance simulations,
and both show good agreement.

2. RESULTS AND DISCUSSION

A. Theoretical Model
1. Gross–Pitaevskii Equation
The dynamics of a BEC cloud in 2D PT symmetric moiré
optical lattices is described by the Gross–Pitaevskii (GP) equa-
tion for the dimensionless macroscopic wave function Ψ
[19–21,49,50]:

i
∂Ψ
∂t

� −
1

2
∇2Ψ� V PT �r�Ψ� jΨj2Ψ, (1)

where Laplacian ∇2 � ∂2∕∂x2 � ∂2∕∂y2, and r � �x, y�; the
last term represents the nonlinearity where the repulsive
atom–atom interaction controlled by Feshbach resonance is
chosen. We stress that in the context of nonlinear optics, the
corresponding nonlinear Schrödinger equation for the propa-
gation dynamics of field amplitude is deduced readily by sub-
stituting the time t with propagation distance z in Eq. (1). The
PT moiré lattice under study yields

V PT �r� � V 1��cos2 x � cos2 y� � iV 0�sin 2x � sin 2y��
� V 2��cos2 x 0 � cos2 y 0� � iV 0�sin 2x 0 � sin 2y 0��,

(2)

where V 1,2 is the strength, V 0 is the imaginary potential
strength, and the strength contrast between the two sublattices
is defined as p � V 2∕V 1, setting V 1 � 4 for discussion. Note
that the potential Eq. (2) matches the requirement of PT sym-
metry, V PT �r� � V �

PT �−r�, and it reduces to the usual (non-
PT ) moiré lattice at V 0 � 0, and to the conventional PT

lattice at V 2 � 0. The �x, y� plane is related to the rotation
�x 0, y 0� plane with a twisting angle θ:

�
x 0

y 0

�
�

�
cos θ − sin θ
sin θ cos θ

��
x
y

�
: (3)

2. Linear Tunable Flatband Properties
Depicted in Fig. 1 is the linear Bloch spectrum of the PT
moiré optical lattice [Eq. (2)] under Pythagorean angle
θ � arctan�2αβ∕�α2 − β2��, with the Pythagorean triples
�α2 − β2; 2αβ, α2 � β2� for natural numbers �α, β�. One can
see from Fig. 1(a) that the widths of the first and second finite
gaps compress rapidly with increasing V 0 at a defined angle θ
[i.e., θ � arctan�3∕4�], and non-Hermitian degeneracy arises
at an exceptional point (singularity) V 0 � 0.5, at which there
is no Bloch gap. With an increase of strength contrast p, more
and more flatbands appear, widening the first gap while split-
ting the second gap, according to Fig. 1(b). For the 2D square
PT moiré lattice at Pythagorean angle, the associated first re-
duced Brillouin zone in reciprocal space is given in Fig. 1(c).
Typical real and imaginary parts of such lattices are shown in
Figs. 1(d) and 1(e) at θ � arctan�3∕4�, and in Figs. 1(g) and
1(h) at θ � arctan�5∕12�; the corresponding linear bandgap
structures are respectively shown in Figs. 1(f ) and 1(i), where
there are broad first and second gaps.

The stationary solution ϕ at chemical potential μ of Eq. (1)
is given by Ψ � ϕe−iμt (or Ψ � ϕeiμt with μ the propagation
constant, in the context of nonlinear optics), yielding

Fig. 1. Bandgap structures for 2D PT symmetric moiré optical lat-
tices at θ � arctan�3∕4� with increasing imaginary potential strength
V 0 (a) and strength contrast p (b). (c) First Brillouin zone in 2D recip-
rocal space. Contour plots of the real (d), (g) and imaginary (e),
(h) parts of the lattice (blue, lattice potential minima; red, lattice po-
tential maxima) at θ � arctan�3∕4� (d), (e) and θ � arctan�5∕12� (g),
(h), and their corresponding bandgap diagrams (f ), (i) at V 0 � 0.02
and p � 1 in reduced zone representation. I and II in (f ), (i) represent
the first and second bandgaps.
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μϕ � −
1

2
∇2ϕ� V PT �r�ϕ� jϕj2ϕ: (4)

Since we are interested in GS solutions supported by 2D
PT moiré lattices, their stability property is a key issue, which
is evaluated by linear-stability analysis. Thus, we perturb the
solution as ψ � �Φ� ρ exp�λt� � ϱ� exp�λ�t�� exp�−iμt�,
where Φ is the unperturbed solution constructed from Eq. (4),
and ρ and ϱ are small perturbations under eigenvalue λ.
Substituting it into Eq. (1) would lead to the linear eigenvalue
problem:

iλρ � −
1

2
∇2ρ − μρ� V PT �r�ρ� 2jϕj2ρ� ϕ2ϱ, (5)

iλϱ � � 1

2
∇2ϱ� μϱ − V �

PT �r�ϱ − 2jϕj2ϱ − ϕ2ρ: (6)

One can see from Eqs. (5) and (6) that the solution is stable
only when all real parts of the eigenvalues are zero [Re�λ� � 0];
it is unstable otherwise.

B. Nonlinear Localized Modes and Their Properties
1. Fundamental Gap Solitons
The typical nonlinear localized mode in PT moiré optical lat-
tices is the fundamental mode, matter-wave GSs, populated
within atomic finite gaps, the characteristic profile of which
is displayed in Figs. 2(a)–2(c). It is observed that the real wave
function, Re�ϕ�, resembles a bright GS, while its imaginary
part, Im�ϕ�, takes the form of a dipole. The condensate
population, which is the number of atoms, N �R�∞
−∞ jϕ�r�j2dr, as a function of the chemical potential μ for
GSs in PT moiré lattices at θ � arctan�3∕4�, is shown in
Fig. 2(d), displaying an “anti-Vakhitov–Kolokolov” (anti-VK)
criterion, dN∕dμ > 0, a necessary but not sufficient condition

for the stability of GSs in periodic structures with repulsive
(defocusing) nonlinearity [29–32]. For a given μ inside the first
gap, the dependency between number of atoms N and strength
contrast p, N �p�, is obtained in Fig. 2(e), revealing a slight vi-
bration of N when altering p; such a feature provides a flexible
opportunity to launch fundamental GSs in moiré optical lat-
tices with changeable strength contrasts, in addition to the
twisting angle θ. Figure 2(f ) depicts N versus imaginary poten-
tial strength V 0 at θ � arctan�3∕4� and μ � 6.7 (within the
second finite gap), showing a decrease tendency. We emphasize
that the fundamental GSs are very stable in the midst of the first
and second gaps; they are unstable as long as they are excited
near both edges of the Bloch bands, and the directly perturbed
evolutions shown in the following will prove it.

2. Higher-Order Gap Solitons
Besides the fundamental mode reported in Fig. 2, PT moiré
optical lattices can also support higher-order spatially localized
gap modes that may be considered as composite structures of
several fundamental GSs. Two examples of such higher-order
modes, composed of two out-of-phase and in-phase fundamen-
tal GSs, are displayed in Figs. 3(a), 3(b) and Figs. 3(c), 3(d),
respectively. Their contour plots are shown in the second line of
Fig. 3, with an emphasis on their tilted placements structured
by twisting optical lattices; conforming to the fundamental
counterpart in Fig. 2(b), the imaginary sections of the
composite GSs emerge always as a dipole mode. The depending
relations N �μ� of both higher-order GS modes are summed up
in Fig. 3(i), demonstrating, once again, the empirical stability
of anti-VK criterion dN∕dμ > 0 [29–32].

3. Gap Vortices
It is instructive to see whether PT moiré optical lattices can
sustain robust stable complex localized gap modes represented
as gap vortices with topological charge (winding number) S.
Our numerical calculations demonstrate that it is possible to
create stable gap vortices with S � 1 in such a novel periodic
structure, provided that they are excited within finite gaps.
Typical profiles of 2D hollow gap vortices with S � 1 are
in the form of four fundamental GSs entangled with 2π phase,
according to Figs. 4(a) and 4(b), where the corresponding real
and imaginary parts of the wave functions and the associated
phase structures are included. Evidently, both real and imagi-
nary parts show the similarity of having positive and negative
values; and counterintuitively, the imaginary wave function
Im�ϕ� for the vortex gap mode does not exhibit a dipole-like
feature for each fundamental GS, in contrast to their funda-
mental counterparts and higher-order ones as depicted in
Fig. 2(b) and Figs. 3(b), 3(d), 3(f ), and 3(h). The non-dipole
feature of the imaginary parts of the gap vortices may be ex-
plained by the unique and inherent property of localized vor-
tical modes—the phase factor, which, together with the
structural property of PT moiré optical lattices, determines
the wave structures (both real and imaginary parts) of gap vor-
tices. This can be clearly observed from the corresponding
phase structures of the gap vortices displayed in the right col-
umns of the first two lines of Fig. 4. Also, in Fig. 4(c), we obtain
the curve N �μ� for such kinds of gap vortices with topological
charge S � 1, showing an increase relationship.

Fig. 2. Typical profile of a fundamental GS supported by the 2D
PT symmetric moiré optical lattice at θ � arctan�3∕4� (a)–(c).
Corresponding real (a) and imaginary (b) parts, and contour plot
of the module (c). Condensate population, N , as a function of chemi-
cal potential μ (d), strength contrast p (e), and imaginary potential
strength V 0 (f ) at θ � arctan�3∕4�. Other parameters: μ � 5,
N � 47.4 in (a)–(c). μ � 6.7 in (f ).
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4. Dynamics of Gap Solitons and Vortices
The stability properties of all 2D localized gap modes (funda-
mental and higher-order GSs, gap vortices) have been measured
in linear-stability analysis and direct numerical simulations of
the perturbed evolutions, using Eqs. (5), (6), and (1), as
pointed out previously. Our findings suggest the common fea-

ture of spatially localized modes supported by PT moiré peri-
odic structures, that is, the GSs, is stable within the middle
portions of finite gaps and unstable close to the band edges.
For the fundamental GSs in Figs. 5(a) and 5(b), higher-order
modes in Figs. 5(c) and 5(d), and gap vortices at topological
charge S � 1 in Figs. 5(e) and 5(f ), with the stable ones being

Fig. 3. Typical profiles of higher-order GSs grouped as two out-of-phase (a), (b) and in-phase (c), (d) fundamental GSs at θ � arctan�3∕4�;
corresponding contour plots are displayed in the second line (e)–(h). (i) Condensate population, N , as a function of chemical potential μ at
θ � arctan�3∕4� (black, out-of-phase mode; red dashed, in-phase mode). Other parameters: μ � 4.4, N � 43.9 for B and μ � 4.6,
N � 59.3 for C.

Fig. 4. Profiles of gap vortices consisting of four fundamental GSs with vortex charge S � 1 prepared within (a) and near the upper edge (b) of the
first finite gap; corresponding condensate population, N , as a function of chemical potential μ at θ � arctan�3∕4� (c). Panels for the top and center
lines denote, respectively, contour plot of the module, real and imaginary parts, as well as the associated phase structure. Other parameters for gap
vortices marked by points D and E: (a) μ � 4.8, N � 153.5; (b) μ � 6, N � 430.

Research Article Vol. 11, No. 2 / February 2023 / Photonics Research 199



prepared in gaps and unstable ones near the band edges, their
directly perturbed evolutions are depicted in the second line of
Fig. 5, which are in good agreement with their linear eigenvalue
spectra produced by linear-stability analysis in the bottom line
of Fig. 5. It is important to emphasize that during evolution,
the unstable localized gap modes develop multiple side peaks
that reduce the necessary number of atoms (N ) for sustaining
the original gap modes; by contrast, shapes (good coherence) of
stable modes can always remain. It must be pointed that the real
eigenvalues in Figs. 5(a), 5(c), and 5(e) for stable GSs are not
exactly zero, because we use the truncated matrix limited by our
insufficient memory and CPU power, confirming the require-
ment of large spatial grid points in dealing with moiré optical
lattices (compared to that with conventional ones).

5. Stability Regions for Stable Localized Gap Modes
Before proceeding to the next section, we stress that the stabil-
ity regions of all the localized gap modes considered above are
accumulated in Table 1. It is seen that there are wide stable
regions within the first two finite gaps, no matter what kind
of localized gap mode, providing compelling evidence that
localized gap modes are robust enough in moiré optical lattices
with flatbands. Another common feature of all these localized

modes is that they are always populated at the lattice potential
minima, which change with the change of the twist angle-de-
pendent lattice structure.

C. Experimental Consideration
Although our focus is merely on BECs loaded onto PT moiré
optical lattices, the physical system under study could directly
apply to the nonlinear optics context for describing light propa-
gation in PT moiré photonic crystals and lattices, since both
contexts share the same model [51]. The only difference is to
replace the time t by propagation direction z in Eq. (1), and the
chemical potential μ by propagation constant −b in Eq. (4);
then the wave function ϕ�x, t� is replaced by the electromag-
netic field amplitude of laser pulse E�z, x�, and the number of
atoms N would be the soliton power U . Considering the fact
that PT optical lattices have been successfully fabricated in op-
tics (and photonics) [36–41] and ultracold atoms [42,43], the
PT optical lattices of moiré type could also be practically real-
ized using current-state-of-the-art experimental technologies.
Specifically, this is achievable in optics using optical waveguides
of semiconductor structure with alternating PT -symmetric
gain–loss modulation [52] or distributed-feedback optical
structures with gain or loss regions [53]. In terms of atomic
gases, this is accomplishable in a gas of multilevel atoms such
as the 85Rb atomic system working under electromagnetically
induced transparency [15,42,43]. Particularly, GSs have been
created in both contexts [33–35], and the spatially localized gap
modes predicted here can thus be envisioned in both experi-
mental platforms.

D. Materials and Methods
All the numerical results presented above obey the following
numerical procedure: the stationary GS solution is first found

Fig. 5. Profiles of fundamental GSs (a), (b), higher-order GSs (c), (d), and gap vortices with S � 1 (e), (f ) prepared within the first (a), (c), (e),
(f ) and second (b), (d) finite gaps. Corresponding perturbed evolutions and linear eigenvalue spectra obtained from linear-stability analysis are
displayed in the second and third lines, respectively. Other parameters: (a) μ � 5, N � 47.4; (b) μ � 6.29, N � 128.2; (c) μ � 5.2,
N � 114.7; (d) μ � 6.28, N � 252.6; (e) μ � 4.8, N � 153.5; (f ) μ � 6, N � 430. White noise with 10% of its soliton’s amplitude is applied
for all.

Table 1. Stability Regions (Characterized by μ) of
Nonlinear Localized Modes within the First and Second
Finite Gaps

Localized Modes Stability Regions (μ)
Fundamental gap solitons 3.74 ≤ μ ≤ 6 and 6.7 ≤ μ ≤ 7.1
Out-of-phase gap solitons 3.74 ≤ μ ≤ 5.95 and 6.8 ≤ μ ≤ 7.1
In-phase gap solitons 3.74 ≤ μ ≤ 5.95 and 6.8 ≤ μ ≤ 7.1
Gap vortices 3.74 ≤ μ ≤ 5.9 and 6.9 ≤ μ ≤ 7.0
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from Eq. (4) via a modified squared-operator iteration method
[54]; then its stability is measured by means of the linear-
stability analysis [Eqs. (5) and (6)] in the Fourier collocation
method [54], and direct perturbance simulations [Eq. (1)]
using the fourth-order Runge–Kutta method in real time.

3. CONCLUSION

We have addressed an as yet unresolved issue of the excitations
and stability of 2D GSs supported by PT symmetric moiré
optical lattices that exhibit a tunable flatband feature. Three
categories of GSs are found, which are fundamental GSs and
higher-order ones as well as gap vortices with topological
charge, residing in both the first and second finite bandgaps
of the associated diffraction diagram, and their stability is evalu-
ated in linear-stability analysis and direct perturbance simula-
tions. The experimental platforms for observing them are
discussed, and we envision that the localized gap modes in PT
symmetric moiré periodic structures are within reach in con-
texts of nonlinear optics and atomic media.
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